
Advanced Operating Systems  

 
Process Scheduling Algorithms 

Operating Systems 1 



CPU Scheduling 

• How is the OS to decide which of several tasks to take off a 

queue? 

• Scheduling: deciding which threads are given access to 

resources from moment to moment. 

Operating Systems 2 



Assumptions about Scheduling 

• CPU scheduling big area of research in early ‘70s 

• Many implicit assumptions for CPU scheduling: 

– One program per user 

– One thread per program 

– Programs are independent 

• These are unrealistic but simplify the problem 

• Does “fair” mean fairness among users or programs? 

– If I run one compilation job and you run five, do you get five times as 

much CPU? 

• Often times, yes! 

• Goal: dole out CPU time to optimize some desired 

parameters of the system. 

– What parameters? 

Operating Systems 3 



Assumption: CPU Bursts 

Operating Systems 4 



Assumption: CPU Bursts 

• Execution model: programs alternate between bursts of CPU 

and I/O 

– Program typically uses the CPU for some period of time, then does 

I/O, then uses CPU again 

– Each scheduling decision is about which job to give to the CPU for 

use by its next CPU burst 

– With timeslicing, thread may be forced to give up CPU before 

finishing current CPU burst. 

Operating Systems 5 



What is Important in a Scheduling 

Algorithm? 

Operating Systems 6 



What is Important in a Scheduling 

Algorithm? 

• Minimize Response Time 

– Elapsed time to do an operation (job) 

– Response time is what the user sees 

• Time to echo keystroke in editor 

• Time to compile a program 

• Real-time Tasks: Must meet deadlines imposed by World 

• Maximize Throughput 

– Jobs per second 

– Throughput related to response time, but not identical 

• Minimizing response time will lead to more context switching than if you 

maximized only throughput 

– Minimize overhead (context switch time) as well as efficient use of 

resources (CPU, disk, memory, etc.) 

• Fairness 

– Share CPU among users in some equitable way 

– Not just minimizing average response time 

Operating Systems 7 



Scheduling Algorithms: First-Come, 

First-Served (FCFS) 

• “Run until Done:” FIFO algorithm 

• In the beginning, this meant one program runs non-

preemtively until it is finished (including any blocking for I/O 

operations) 

• Now, FCFS means that a process keeps the CPU until one or 

more threads block 

• Example: Three processes arrive in order P1, P2, P3. 

– P1 burst time: 24 

– P2 burst time: 3 

– P3 burst time: 3 

• Draw the Gantt Chart and compute Average Waiting Time 

and Average Completion Time. 

Operating Systems 8 



Scheduling Algorithms: First-Come, 

First-Served (FCFS) 

• Example: Three processes arrive in order P1, P2, P3. 

– P1 burst time: 24 

– P2 burst time: 3 

– P3 burst time: 3 

• Waiting Time 

– P1: 0 

– P2: 24 

– P3: 27 

• Completion Time: 

– P1: 24 

– P2: 27 

– P3: 30 

• Average Waiting Time: (0+24+27)/3 = 17 

• Average Completion Time: (24+27+30)/3 = 27 

P1 P2 P3 

0 24 27 30 

Operating Systems 9 



Scheduling Algorithms: First-Come, 

First-Served (FCFS) 

• What if their order had been P2, P3, P1? 

– P1 burst time: 24 

– P2 burst time: 3 

– P3 burst time: 3 

Operating Systems 10 



Scheduling Algorithms: First-Come, 

First-Served (FCFS) 

• What if their order had been P2, P3, P1? 

– P1 burst time: 24 

– P2 burst time: 3 

– P3 burst time: 3 

• Waiting Time 

– P1: 0 

– P2: 3 

– P3: 6 

• Completion Time: 

– P1: 3 

– P2: 6 

– P3: 30 

• Average Waiting Time: (0+3+6)/3 = 3 (compared to 17) 

• Average Completion Time: (3+6+30)/3 = 13 (compared to 27) 

P1 P2 P3 

0 3 6 30 

Operating Systems 11 



Scheduling Algorithms: First-Come, 

First-Served (FCFS) 

• Average Waiting Time: (0+3+6)/3 = 3 (compared to 17) 

• Average Completion Time: (3+6+30)/3 = 13 (compared to 27) 

• FIFO Pros and Cons: 

– Simple (+) 

– Short jobs get stuck behind long ones (-) 

• If all you’re buying is milk, doesn’t it always seem like you are stuck behind 

a cart full of many items 

– Performance is highly dependent on the order in which jobs arrive (-) 

Operating Systems 12 



How Can We Improve on This? 

Operating Systems 13 



Round Robin (RR) Scheduling 

• FCFS Scheme: Potentially bad for short jobs! 

– Depends on submit order 

– If you are first in line at the supermarket with milk, you don’t care who 

is behind you; on the other hand… 

• Round Robin Scheme 

– Each process gets a small unit of CPU time (time quantum) 

• Usually 10-100 ms 

– After quantum expires, the process is preempted and added to the 

end of the ready queue 

– Suppose N processes in ready queue and time quantum is Q ms: 

• Each process gets 1/N of the CPU time 

• In chunks of at most Q ms 

• What is the maximum wait time for each process? 

Operating Systems 14 



Round Robin (RR) Scheduling 

• FCFS Scheme: Potentially bad for short jobs! 

– Depends on submit order 

– If you are first in line at the supermarket with milk, you don’t care who 

is behind you; on the other hand… 

• Round Robin Scheme 

– Each process gets a small unit of CPU time (time quantum) 

• Usually 10-100 ms 

– After quantum expires, the process is preempted and added to the 

end of the ready queue 

– Suppose N processes in ready queue and time quantum is Q ms: 

• Each process gets 1/N of the CPU time 

• In chunks of at most Q ms 

• What is the maximum wait time for each process? 

– No process waits more than (n-1)q time units 

Operating Systems 15 



Round Robin (RR) Scheduling 

• Round Robin Scheme 

– Each process gets a small unit of CPU time (time quantum) 

• Usually 10-100 ms 

– After quantum expires, the process is preempted and added to the 

end of the ready queue 

– Suppose N processes in ready queue and time quantum is Q ms: 

• Each process gets 1/N of the CPU time 

• In chunks of at most Q ms 

• What is the maximum wait time for each process? 

– No process waits more than (n-1)q time units 

• Performance Depends on Size of Q 

– Small Q => interleaved 

– Large Q is like…  

– Q must be large with respect to context switch time, otherwise 

overhead is too high (spending most of your time context switching!) 

Operating Systems 16 



Round Robin (RR) Scheduling 

• Round Robin Scheme 

– Each process gets a small unit of CPU time (time quantum) 

• Usually 10-100 ms 

– After quantum expires, the process is preempted and added to the 

end of the ready queue 

– Suppose N processes in ready queue and time quantum is Q ms: 

• Each process gets 1/N of the CPU time 

• In chunks of at most Q ms 

• What is the maximum wait time for each process? 

– No process waits more than (n-1)q time units 

• Performance Depends on Size of Q 

– Small Q => interleaved 

– Large Q is like FCFS 

– Q must be large with respect to context switch time, otherwise 

overhead is too high (spending most of your time context switching!) 

Operating Systems 17 



Example of RR with Time Quantum = 4 

  Process Burst Time 

  P1 24 

   P2   3 

   P3   3 

   

• The Gantt chart is:  
 
 
 
 
 
 

P1 P2 P3 P1 P1 P1 P1 P1 

0 4 7 10 14 18 22 26 30 

Operating Systems 18 



Example of RR with Time Quantum = 4 

Process Burst Time 

P1  24 

P2  3 

P3  3 

   

• Waiting Time: 
– P1: (10-4) = 6 

– P2: (4-0) = 4 

– P3: (7-0) = 7 

• Completion Time: 
– P1: 30 

– P2: 7 

– P3: 10 

• Average Waiting Time: (6 + 4 + 7)/3= 5.67 

• Average Completion Time: (30+7+10)/3=15.67 
 
 
 
 
 

P1 P2 P3 P1 P1 P1 P1 P1 

0 4 7 10 14 18 22 26 30 

Operating Systems 19 



Turnaround Time Varies With The Time 

Quantum 

Operating Systems 20 



Example of RR with Time Quantum = 20 

• Waiting Time: 
– P1: (68-20)+(112-88) = 72 

– P2: (20-0) = 20 

– P3: (28-0)+(88-48)+(125-108) = 85 

– P4: (48-0)+(108-68) = 88 

• Completion Time: 
– P1: 125 

– P2: 28 

– P3: 153 

– P4: 112 

• Average Waiting Time: (72+20+85+88)/4 = 66.25 

• Average Completion Time: (125+28+153+112)/4 = 104.5 
 
 
 
 

A process can finish before the time quantum expires, and release the CPU. 

Operating Systems 21 



RR Summary 
• Pros and Cons: 

– Better for short jobs (+) 

– Fair (+) 

– Context-switching time adds up for long jobs (-) 

• The previous examples assumed no additional time was needed for context 
switching – in reality, this would add to wait and completion time without 
actually progressing a process towards completion. 

• Remember: the OS consumes resources, too! 

• If the chosen quantum is  
– too large, response time suffers 

– infinite, performance is the same as FIFO 

– too small, throughput suffers and percentage overhead grows 

• Actual choices of timeslice: 
– UNIX: initially 1 second: 

• Worked when only 1-2 users 

• If there were 3 compilations going on, it took 3  
seconds to echo each keystroke! 

– In practice, need to balance short-job 
performance and long-job throughput: 

• Typical timeslice 10ms-100ms 

• Typical context-switch overhead 0.1ms – 1ms (about 1%) 
 
 
 
 

Operating Systems 22 



Comparing FCFS and RR 

• Assuming zero-cost context  

switching time, is RR always  

better than FCFS? 

• Assume 10 jobs, all start at the  

same time, and each require  

100 seconds of CPU time 

• RR scheduler quantum of 1  

second 

• Completion Times (CT) 

– Both FCFS and RR finish at the same time 

– But average response time is much worse under RR! 

• Bad when all jobs are same length 

• Also: cache state must be shared between all jobs with RR 

but can be devoted to each job with FIFO 

– Total time for RR longer even for zero-cost context switch! 

Job # FCFS CT RR CT 

1 100 991 

2 200 992 

… … … 

9 900 999 

10 1000 1000 

Operating Systems 23 



Comparing FCFS and RR 

Operating Systems 24 



Scheduling 
• The performance we get is somewhat dependent on what 

“kind” of jobs we are running (short jobs, long jobs, etc.) 

• If we could “see the future,” we could mirror best FCFS 

• Shortest Job First (SJF) a.k.a. Shortest Time to Completion 

First (STCF): 

– Run whatever job has the least amount of computation to do 

• Shortest Remaining Time First (SRTF) a.k.a. Shortest 

Remaining Time to Completion First (SRTCF): 

– Preemptive version of SJF: if a job arrives and has a shorter time to 

completion than the remaining time on the current job, immediately 

preempt CPU 

• These can be applied either to a whole program or the 

current CPU burst of each program 

– Idea: get short jobs out of the system 

– Big effect on short jobs, only small effect on long ones 

– Result: better average response time 

 Operating Systems 25 



Scheduling 
• But, this is hard to estimate 

• We could get feedback from the program or the user, but 

they have incentive to lie! 

• SJF/SRTF are the best you can do at minimizing average 

response time 

– Provably optimal (SJF among non-preemptive, SRTF among 

preemptive) 

– Since SRTF is always at least as good as SJF, focus on SRTF 

• Comparison of SRTF with FCFS and RR 

– What if all jobs are the same length? 

– What if all jobs have varying length? 

Operating Systems 26 



Scheduling 
• But, this is hard to estimate 

• We could get feedback from the program or the user, but 

they have incentive to lie! 

• SJF/SRTF are the best you can do at minimizing average 

response time 

– Provably optimal (SJF among non-preemptive, SRTF among 

preemptive) 

– Since SRTF is always at least as good as SJF, focus on SRTF 

• Comparison of SRTF with FCFS and RR 

– What if all jobs are the same length? 

• SRTF becomes the same as FCFS (i.e. FCFS is the best we can do) 

– What if all jobs have varying length? 

• SRTF (and RR): short jobs are not stuck behind long ones 

 

Operating Systems 27 



Example: SRTF 

• A,B: both CPU bound, run for a week 

• C: I/O bound, loop 1ms CPU, 9ms disk I/O 

• If only one at a time, C uses 90% of the disk, A or B could 

use 100% of the CPU 

• With FIFO: Once A and B get in, the CPU is held for two 

weeks 

• What about RR or SRTF? 

– Easier to see with a timeline 

A or B C C I/O 

Operating Systems 28 



Example: SRTF 

• A,B: both CPU bound, run for a week 

• C: I/O bound, loop 1ms CPU, 9ms disk I/O 

 

A or B C C I/O 

Operating Systems 29 



Last Word on SRTF 
• Starvation 

– SRTF can lead to starvation if many small jobs! 

– Large jobs never get to run 

• Somehow need to predict future 

– How can we do this? 

– Some systems ask the user 

• When you submit a job, you have to say how long it will take 

• To stop cheating, system kills job if it takes too long 

– But even non-malicious users have trouble predicting runtime of their 

jobs 

• Bottom line, can’t really tell how long job will take 

– However, can use SRTF as a yardstick for measuring other policies, 

since it is optimal 

• SRTF Pros and Cons 

– Optimal (average response time) (+) 

– Hard to predict future (-) 

– Unfair, even though we minimized average response time! (-) 

Operating Systems 30 



Predicting the Future 

• Back to predicting the future… perhaps we can predict the 

next CPU burst length?   

• Iff programs are generally repetitive, then they may be 

predictable 

• Create an adaptive policy that changes based on past 

behavior 

– CPU scheduling, virtual memory, file systems, etc. 

– If program was I/O bound in the past, likely in the future 

• Example: SRTF with estimated burst length 

– Use an estimator function on previous bursts 

– Let T(n-1), T(n-2), T(n-3), …, be previous burst lengths.  Estimate next 

burst T(n) = f(T(n-1), T(n-2), T(n-3),…) 

– Function f can be one of many different time series estimation 

schemes (Kalman filters, etc.) 

Operating Systems 31 



Determining Length of Next CPU Burst 

• Can only estimate the length 

• Can be done by using the length of previous CPU bursts, 

using exponential averaging 

 

 

:Define  4.

10 ,  3.

burst  CPU next the for value predicted   2.

burst  CPU  of length  actual  1.











 1n

th
n nt

  .1 1 nnn t  

32 



Predicting the Future 
  .1 1 nnn t  

33 



Examples of Exponential Averaging 

•  =0 
– n+1 = n 

– Recent history does not count 

•  =1 
–  n+1 =  tn 

– Only the actual last CPU burst counts 

• If we expand the formula, we get: 
n+1 =  tn+(1 - ) tn -1 + … 

            +(1 -  )j  tn -j + … 

            +(1 -  )n +1 0 

 

• Since both  and (1 - ) are less than or equal to 1, each 
successive term has less weight than its predecessor 

Operating Systems 34 



Priority Scheduling 

• A priority number (integer) is associated with each process 

• The CPU is allocated to the process with the highest priority 

(smallest integer  highest priority) 

– Preemptive (if a higher priority process enters, it receives the CPU 

immediately) 

– Nonpreemptive (higher priority processes must wait until the current 

process finishes; then, the highest priority ready process is selected) 

• SJF is a priority scheduling where priority is the predicted 

next CPU burst time 

• Problem  Starvation – low priority processes may never 

execute 

• Solution  Aging – as time progresses increase the priority 

of the process 

 
Operating Systems 35 



Priority Inversion 

• Consider a scenario in which there are three processes, one 

with high priority (H), one with medium priority (M), and one 

with low priority (L). 

• Process L is running and successfully acquires a resource, 

such as a lock or semaphore. 

• Process H begins; since we are using a preemptive priority 

scheduler, process L is preempted for process H. 

• Process H tries to acquire L’s resource, and blocks 

(because it is held by L). 

• Process M begins running, and, since it has a higher priority 

than L, it is the highest priority ready process.  It preempts L 

and runs, thus starving high priority process H. 

• This is known as priority inversion. 

• What can we do? 

Operating Systems 36 



Priority Inversion 

• Process L should, in fact, be temporarily of “higher priority” 

than process M, on behalf of process H. 

• Process H can donate its priority to process L, which, in this 

case, would make it higher priority than process M. 

• This enables process L to preempt process M and run. 

• When process L is finished, process H becomes unblocked. 

• Process H, now being the highest priority ready process, 

runs, and process M must wait until it is finished. 

• Note that if process M’s priority is actually higher than 

process H, priority donation won’t be sufficient to increase 

process L’s priority above process M.  This is expected 

behavior (after all, process M would be “more important” in 

this case than process H). 

Operating Systems 37 



Multi-level Feedback Scheduling 

• Another method for exploiting past behavior 

– Multiple queues, each with different priority 

• Higher priority queues often considered “foreground” tasks 

– Each queue has its own scheduling algorithm 

• E.g. foreground  RR, background  FCFS 

• Sometimes multiple RR priorities with quantum increasing exponentially 

(highest queue: 1ms, next: 2ms, next: 4ms, etc.) 

– Adjust each job’s priority as follows (details vary) 

• Job starts in highest priority queue 

• If entire CPU time quantum expires, drop one level 

• If CPU is yielded during the quantum, push up one level (or to top) 

Operating Systems 38 



Scheduling Details 

• Result approximates SRTF 

– CPU bound jobs drop rapidly to lower queues 

– Short-running I/O bound jobs stay near the top 

• Scheduling must be done between the queues 

– Fixed priority scheduling: serve all from the highest priority, then the 

next priority, etc. 

– Time slice: each queue gets a certain amount of CPU time (e.g., 70% 

to the highest, 20% next, 10% lowest) 

• Countermeasure: user action that can foil intent of the OS 

designer 

– For multilevel feedback, put in a bunch of meaningless I/O to keep 

job’s priority high 

– But if everyone does this, it won’t work! 

– Consider an Othello program, playing against a competitor.  Key was 

to compute at a higher priority than the competitors. 

• Put in printf’s, run much faster! 

Operating Systems 39 



Scheduling Details 
• It is apparent that scheduling is facilitated by having a 

“good mix” of I/O bound and CPU bound programs, so that 

there are long and short CPU bursts to prioritize around. 

• There is typically a long-term and a short-term scheduler in 

the OS. 

• We have been discussing the design of the short-term 

scheduler. 

• The long-term scheduler decides what processes should be 

put into the ready queue in the first place for the short-term 

scheduler, so that the short-term scheduler can make fast 

decisions on a good mix of a subset of ready processes. 

• The rest are held in memory or disk 

– Why else is this helpful? 

Operating Systems 40 



Scheduling Details 
• It is apparent that scheduling is facilitated by having a 

“good mix” of I/O bound and CPU bound programs, so that 

there are long and short CPU bursts to prioritize around. 

• There is typically a long-term and a short-term scheduler in 

the OS. 

• We have been discussing the design of the short-term 

scheduler. 

• The long-term scheduler decides what processes should be 

put into the ready queue in the first place for the short-term 

scheduler, so that the short-term scheduler can make fast 

decisions on a good mix of a subset of ready processes. 

• The rest are held in memory or disk 

– This also provides more free memory for the subset of ready 

processes given to the short-term scheduler. 

Operating Systems 41 



Fairness 
• What about fairness? 

– Strict fixed-policy scheduling between queues is unfair (run highest, 

then next, etc.) 

• Long running jobs may never get the CPU 

• In Multics, admins shut down the machine and found a 10-year-old job 

– Must give long-running jobs a fraction of the CPU even when there 

are shorter jobs to run 

• Tradeoff: fairness gained by hurting average response time! 

• How to implement fairness? 

– Could give each queue some fraction of the CPU 

• i.e., for one long-running job and 100 short-running ones? 

• Like express lanes in a supermarket – sometimes express lanes get so 

long, one gets better service by going into one of the regular lines 

– Could increase priority of jobs that don’t get service (as seen in the 

multilevel feedback example) 

• This was done in UNIX 

• Ad hoc – with what rate should priorities be increased? 

• As system gets overloaded, no job gets CPU time, so everyone increases in 

priority 

– Interactive processes suffer 

Operating Systems 42 



Lottery Scheduling 

• Yet another alternative: Lottery Scheduling 

– Give each job some number of lottery tickets 

– On each time slice, randomly pick a winning ticket 

– On average, CPU time is proportional to number of tickets given to 

each job over time 

• How to assign tickets? 

– To approximate SRTF, short-running jobs get more, long running jobs 

get fewer 

– To avoid starvation, every job gets at least one ticket (everyone 

makes progress) 

• Advantage over strict priority scheduling: behaves 

gracefully as load changes 

– Adding or deleting a job affects all jobs proportionally, independent of 

how many tickets each job possesses 

Operating Systems 43 



Example: Lottery Scheduling 

• Assume short jobs get 10 tickets, long jobs get 1 ticket 

• What percentage of time does each long job get?  Each 

short job? 

 

 

 

 

 

 

 

• What if there are too many short jobs to give reasonable 

response time 

– In UNIX, if load average is 100%, it’s hard to make progress 

– Log a user out or swap a process out of the ready queue (long term 

scheduler) 

 Operating Systems 44 



Example: Lottery Scheduling 

• Assume short jobs get 10 tickets, long jobs get 1 ticket 

 

 

 

 

 

 

 

 

 

• What if there are too many short jobs to give reasonable 

response time 

– In UNIX, if load average is 100%, it’s hard to make progress 

– Log a user out or swap a process out of the ready queue (long term 

scheduler) 

 

# short jobs /  

# long jobs 

% of CPU each 

short job gets 

% of CPU each 

long job gets 

1/1 91% 9% 

0/2 N/A 50% 

2/0 50% N/A 

10/1 9.9% 0.99% 

1/10 50% 5% 

Operating Systems 45 



Scheduling Algorithm Evaluation 

• Deterministic Modeling 

– Takes a predetermined workload and compute the performance of 

each algorithm for that workload 

• Queuing Models 

– Mathematical Approach for handling stochastic workloads 

• Implementation / Simulation 

– Build system which allows actual algorithms to be run against actual 

data.  Most flexible / general. 

Operating Systems 46 



Conclusion 

• Scheduling: selecting a waiting process  

from the ready queue and allocating the  

CPU to it 

• When do the details of the scheduling  

policy and fairness really matter? 

– When there aren’t enough resources to go around 

• When should you simply buy a faster computer? 

– Or network link, expanded highway, etc. 

– One approach: buy it when it will pay for itself in improved response 

time 

• Assuming you’re paying for worse response in reduced productivity, 

customer angst, etc. 

• Might think that you should buy a faster X when X is utilized 100%, but 

usually, response time goes to infinite as utilization goes to 100% 

– Most scheduling algorithms work fine in the “linear” portion of the 

load curve, and fail otherwise 

– Argues for buying a faster X when utilization is at the “knee” of the 

curve 

Operating Systems 47 



• FCFS scheduling, FIFO Run Until Done: 

– Simple, but short jobs get stuck behind long ones 

• RR scheduling: 

– Give each thread a small amount of CPU time when it executes, and cycle 

between all ready threads 

– Better for short jobs, but poor when jobs are the same length 

• SJF/SRTF: 

– Run whatever job has the least amount of computation to do / least amount 

of remaining computation to do 

– Optimal (average response time), but unfair; hard to predict the future 

• Multi-Level Feedback Scheduling: 

– Multiple queues of different priorities 

– Automatic promotion/demotion of process priority to approximate 

SJF/SRTF 

• Lottery Scheduling: 

– Give each thread a number of tickets (short tasks get more) 

– Every thread gets tickets to ensure forward progress / fairness 

• Priority Scheduing: 

– Preemptive or Nonpreemptive 

– Priority Inversion 

Operating Systems 48 


